Section 5.4 - Sum and Difference Formulas

Don't worry, you do not have to memorize the following formulas, **but** you have to know how to use them

$$\sin(\theta + \beta) = \sin\theta\cos\beta + \cos\theta\sin\beta$$

$$\sin(\theta - \beta) = \sin\theta\cos\beta - \cos\theta\sin\beta$$

$$\cos(\theta + \beta) = \cos\theta\cos\beta - \sin\theta\sin\beta$$

$$\cos(\theta - \beta) = \cos\theta\cos\beta + \sin\theta\sin\beta$$

$$\tan(\theta + \beta) = \frac{\tan\theta + \tan\beta}{1 - \tan\theta \tan\beta}$$

$$\tan(\theta - \beta) = \frac{\tan\theta - \tan\beta}{1 + \tan\theta \tan\beta}$$

The goal here is to find two angles with REFERENCE angles of 30°, 45° or 60° that can be combined to get the angle you need.

Ex. 1) Find the EXACT value of the following – no decimals!

a. sin75°

b. cos255°

c. tan 105°

Section 5.4 - Sum and Difference Formulas

Ex. 2) Write the expression as the sine, cosine, or tangent of the angle and find the exact value: (so basically, match to one of the formulas on the first page)

a.
$$\sin 42^{\circ} \cos 12^{\circ} - \cos 42^{\circ} \sin 12^{\circ}$$

b.
$$\cos 27^{\circ} \cos 18^{\circ} - \sin 27^{\circ} \sin 18^{\circ}$$

c.
$$\frac{\tan 75^{\circ} - \tan 15^{\circ}}{1 + \tan 75^{\circ} \tan 15^{\circ}}$$

Ex. 3) Find the exact value (no decimals) of the trig function given that

$$\sin u = \frac{5}{13}$$
 and $\cos v = \frac{-3}{5}$ (**both** u and v are in Quadrant II)

$$\sin(v-u)=$$

Section 5.4 - Sum and Difference Formulas

Ex. 4) Find the exact value of the trig function given that $\sin u = \frac{-7}{25}$ and $\cos v = \frac{-4}{5}$. If both u and v are in the same quadrant, they must be in Quadrant _____

$$\tan(u-v)=$$

Ex. 5) Verify the Identity (Yes, it's back!)

$$\cos(x+y)+\cos(x-y)=2\cos x\cos y$$